lnx的定义域怎么算?

编辑:自学文库 时间:2024年09月22日
对于`lnx`函数来说,它的定义域是`x>0`,即`x`的取值必须大于0。
  也就是说,只有当`x`大于0时,函数`lnx`才有定义。
  在数学中,自然对数函数`lnx`的定义域是一个开区间`(0, +∞)`,即不包括0。
  因此,任何大于0的实数都属于`lnx`的定义域。
  

换行详细说明:自然对数函数`lnx`的定义域是一个开区间`(0, +∞)`,这意味着`lnx`只对大于0的实数值定义。
  当`x`小于等于0时,`lnx`无法取得实数值,因此无定义。
  只有当`x`大于0时,`lnx`存在实数定义。
  举例而言,在`x=1`时,我们可以得到`ln(1)=0`。
  但是当`x=0`时,`lnx`无法进行计算,因为`ln(0)`没有实数解。
  因此,`lnx`的定义域为`x>0`。